

Variable Angle Target Training System (V. A. T. T. S.)

T	EA	Μ	#1	6

ASHAR ABDULLAH

ANDREW BELLSTROM

RYAN D'AMBROSIA

JORDAN LOMINAC

MEAC PRESENTATION

CONTACT: CHRISISLER

ADVISORS: DR. PATRICK HOLLIS

DR. CHIANG SHIH

INSTRUCTOR: DR. NIKHIL GUPTA

Overview

- Background
- Goals and Needs Statement
- Design Specifications
- Design Progress
 - Target Bracket Progress
 - Lifting and Turning Arm Designs
 - Motor Analysis

```
•Future Work and Challenges
```


Background

- Stationary Infantry Targets (SITs) are used to train military in combat situations
- Include many features that help provide a more realistic experience
 - Muzzle Flash
 - Hit Detection
- Flips targets up and down
- A variety of targets can be used with the SIT

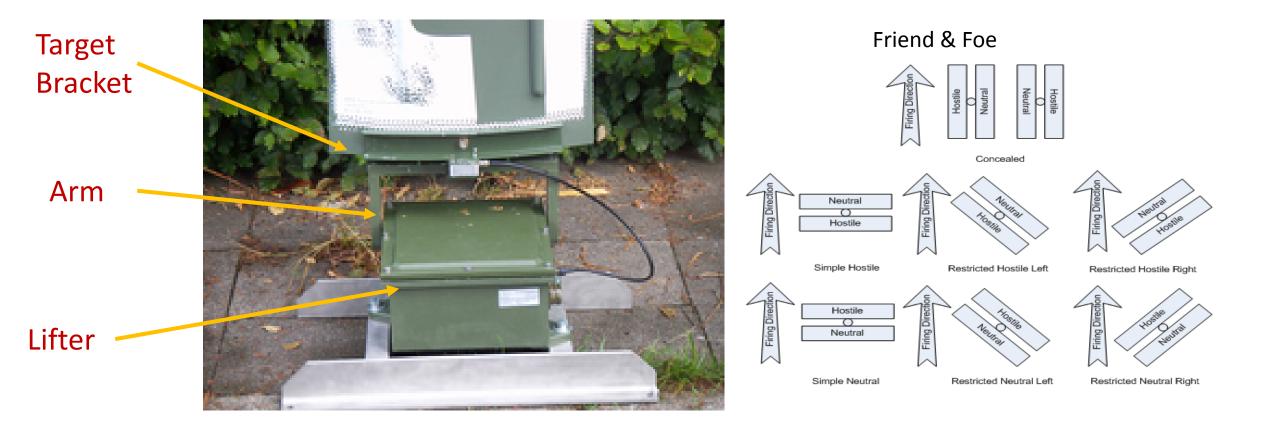
Background

"E" Style (Waffle Board)

"Figure 12" Style

"Figure 11" Style

"Ivan" Style


Andrew Bellstrom

Team 16

Terminology

Needs and Goal Statement

• Needs Statement:

- "Lockheed-Martin's current Stationary Infantry Target does not allow for horizontal rotation."
- Goal Statement:

"To create a target system that can deploy a variety of targets from a resting position, and rotate to a desired angular position."

Objectives

Current Design:

Down Position

Up Position

Objectives

Proposed Design:

Down Position

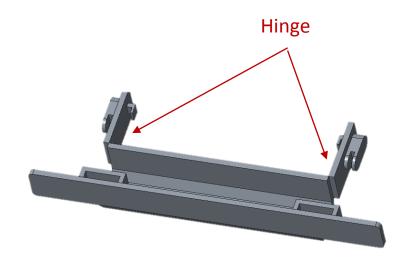
Up Position with Rotation

Objectives

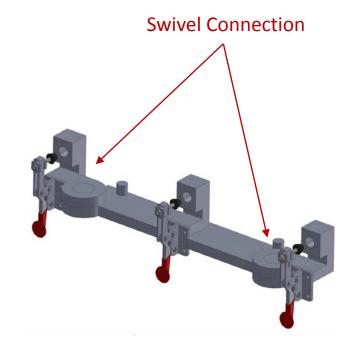
- Adding to Lockheed-Martin's current SIT to allowing for rotation of the of the target
- Create a universal bracket for variety of targets
- Produce a functional prototype of our selected design

Design Specifications

- Time to install new target shall be less than 10 seconds
- Motor housing shall be rated to at least IP67
- Motor shall rotate target 90° in either direction within 1 second of receiving command
- Distance from bottom of lifter to top of the bracket shall be no more than 18"
- Weight of lifter arm with turner motor shall be no more than 10 lbs.
- Arm shall not impede other integrated SIT functionalities
- Firmware shall be compatible with all FASIT 2.0 commands
- Bracket and arm must be able to hold the target in 35 mph winds
- Combined operational and storage temperature: -20°C to 60°C



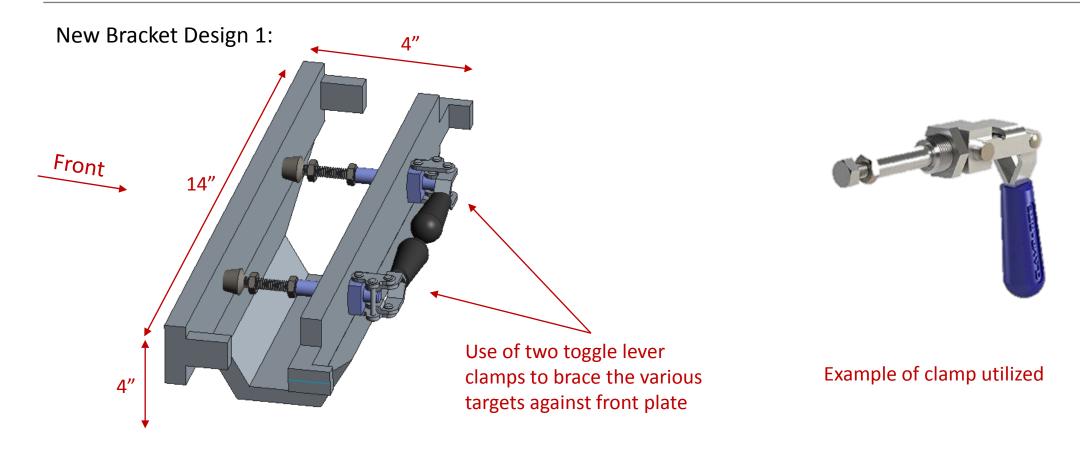
Team 16



Previous Target Brackets

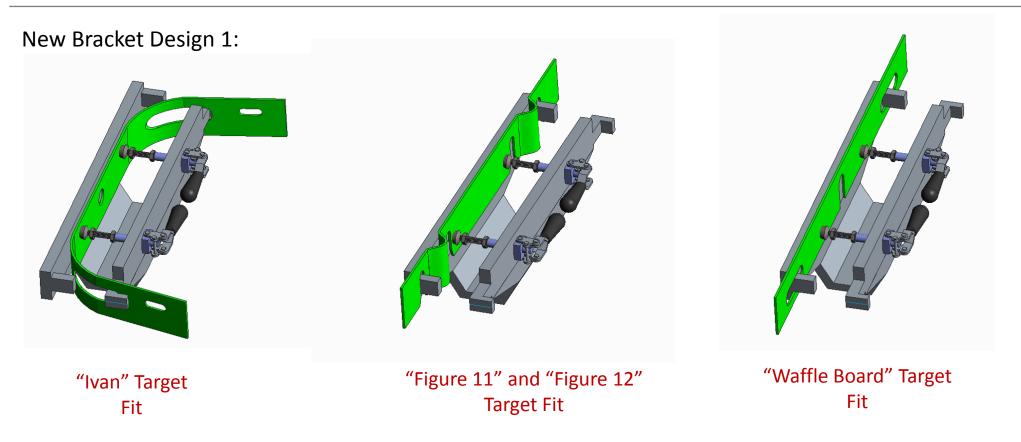
Example of Previous Bracket 1

Example of Previous Bracket 2

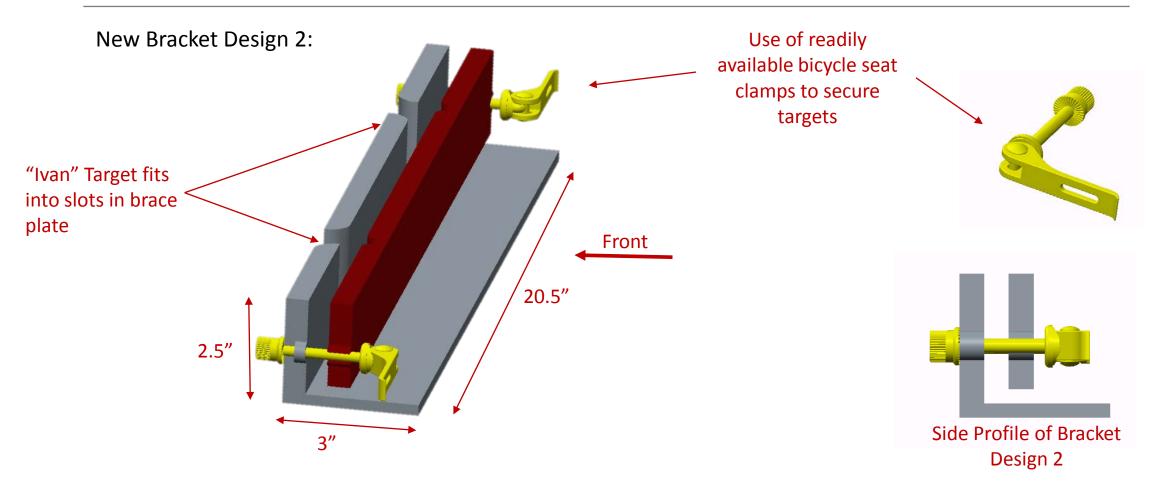

Target Bracket Progress

New Developments:

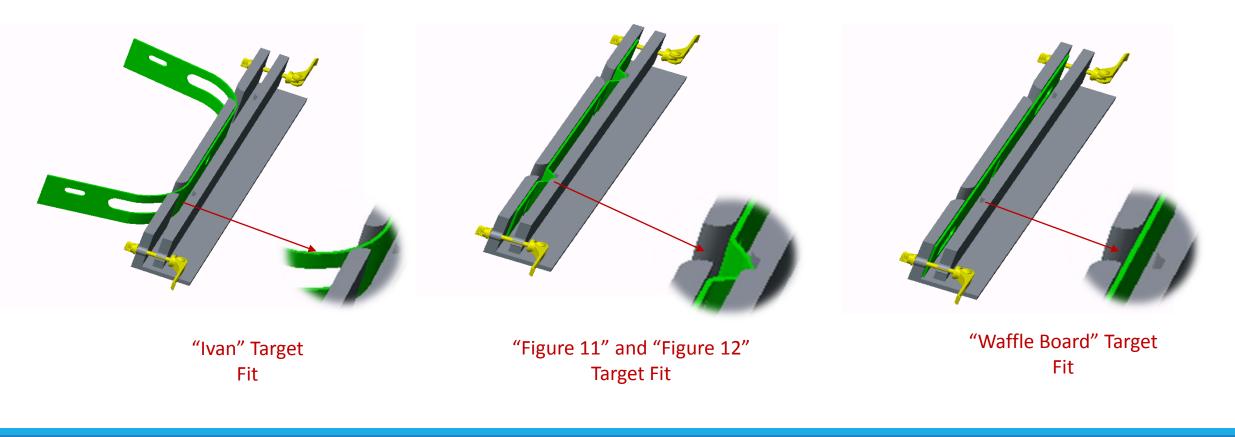
- From sponsor feedback, many of the team's previous designs were inadequate due to various uses of a hinge or other similar moving parts
- Hinges inadequate due to operational conditions, specifically the SIT's environment
- Previous designs were amended to incorporate an alternate form of latching/locking mechanism



Amended Turning Bracket Designs

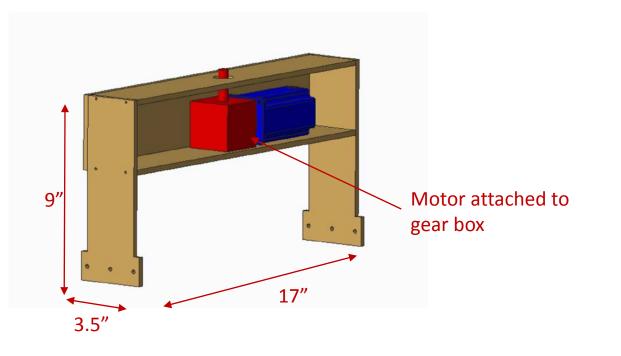


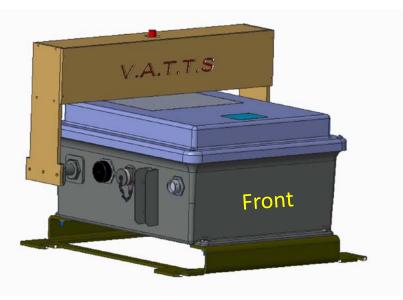
Amended Turning Bracket Designs


Amended Turning Bracket Designs

Amended Turning Bracket Designs

New Bracket Design 2:




Team 16

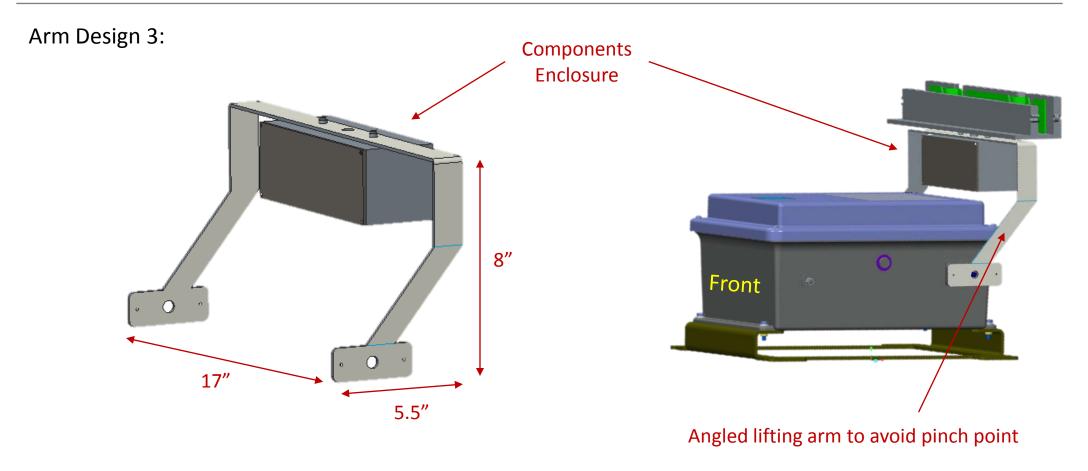
Lifting and Turning Arm Designs

Arm Design 1:

Arm Design Attached to Provided Lifter

Jordan Lominac

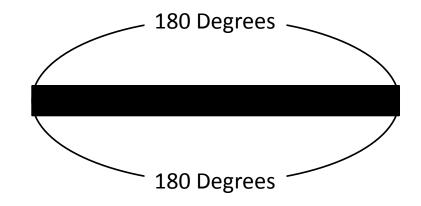
Lifting and Turning Arm Designs


Arm Design 2:

Lifting and Turning Arm Designs

Target Turning Motor Selection

- Stepper Motor
 - Provides a Full Range of Motion
 - Precision Control
 - Open-Loop Feedback
 - High Holding Torque
- Ideal for quick and accurate positioning over short distances
- Team has experience working with stepper motors



Ashar Abdullah

Target Turning Motor Selection

- Bracket needs to be able to turn **180** degrees in **1** second
- Required Operating Speed is 40 RPM
- •To Find Required Torque from Motor
 - Assumed a very bulky bracket
 - The biggest target is attached
 - Frictionless
- Required Motor Torque: 620 ozf*in @ 40 RPM
 - Safety Factor: 1.5

Bracket: 180 Degree Positioning

LOCKHEED MA	R T	' I N	7	
-------------	-----	-------	---	--

Task Name 👻	Duration 👻	T				15 Oct S										S W			
Design Ideation	30 days																		
Bracket Brainstorming	2 days			Group															
Bracket Functional Analysis	2 days			Gro	oup														
Mentor Review	1 day																		
Bracket Concept Selection	18 days		1						Ryan	۱									
Turning and Lifting Arm Brainstorming	3 days							Grou	ıp										
Turning and Lifting Arm Functional Analysis	1 day							Jo	rdan										
Design Synthesis	9 days	1																	
Combining Lifting Arm and Bracket Designs	7 days	1										Jor	dan						
Motor Analysis (Torque Required, Enclosure Type)	3 days	1								An	drew,	,Fern	ando						
Controller Analysis (Requirements Based on Motor)	3 days	1							1		Ash	nar							
Motor and Controller Selection	2 days	1										Ry	yan						
Final Design Selected	1 day	1											Ryan						
Prototype Generation	13 days																		
Prototype Engineering Analysis	9 days																		
Structural Analysis	6 days														Jord	lan, Fei	mand	o	
Thermal Analysis	6 days														Ash	ar,And	rew		
Safety Analysis	3 days														F	lyan			
Economic Analysis	4 days															Jo	rdan		
Budgeting	4 days													Fe	ernan	do			
Final Parts Selection and Bill of Materials	6 days															Ry	ar)		
Parts Ordering	13 days	1															F	ernan	do

Future Challenges

Mating of the Bracket and the Arm assemblies

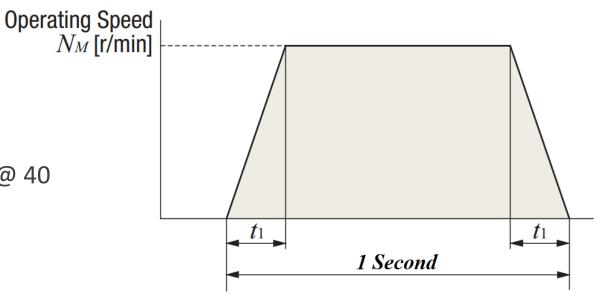
• Developing a suitable enclosure for the motor and control board

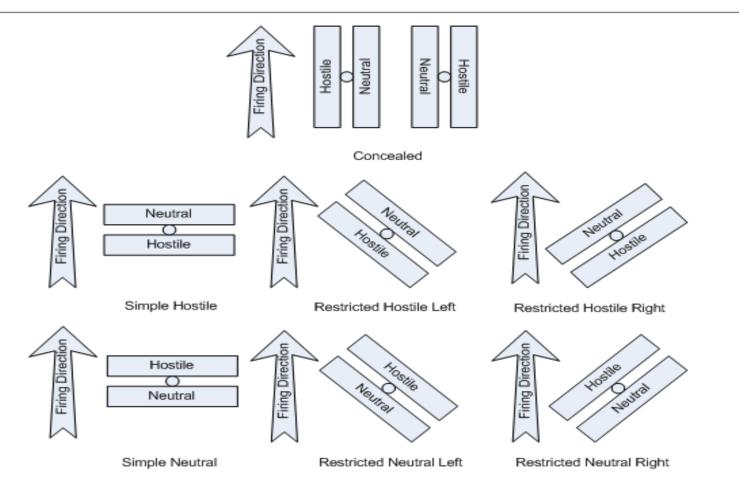
• Synthesis of all design components

• Engineering analysis of all design components

- 1. Infantry Squad Battle Course, Army Engineers
- 2. MS Instruments Stationary Infantry Target Specifications
- 3. Theissen GSA Federal Supply Schedule Price List
- 4. Future Army System of Integrated Targets: Presentation Devices Interface Control Doc. 2.0
- 5. http://www.orientalmotor.com/products/pdfs/2015 2016/H/Technical_Reference_Overview.pdf
- 6. McMaster Carr

Questions / Comments

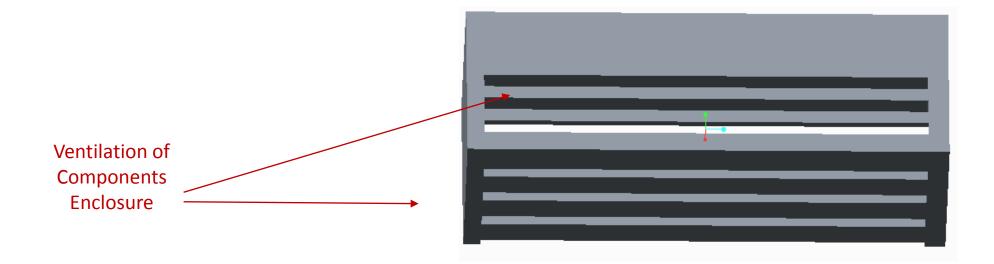



References

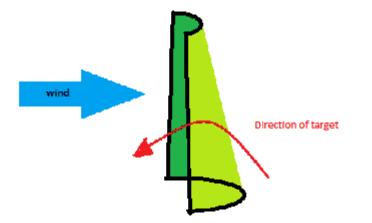
- Bracket needs to be able to turn 180 degrees in 1 second
- Acceleration/Deceleration time t_1 is **0.125** seconds
- •To Find Required Torque from Motor
 - Assumed a very bulky bracket
 - The biggest target is attached
 - Frictionless
- Required Motor Torque: 620 ozf*in (32 lbf*in) @ 40 RPM
 - Safety Factor: 1.5

Motor Speed vs Time

FASIT 2.0 PD IDC Command	Target Action
0	Concealed
1	Simple Hostile
2	Restricted Hostile Left
3	Restricted Hostile Right
4	Simple Neutral
5	Restricted Neutral Left
6	Restricted Neutral Right



Arm Design 3:

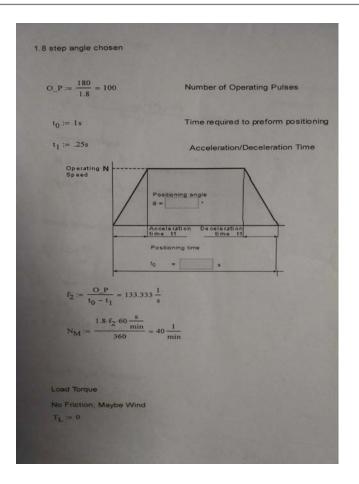


Forces generated with tailwind

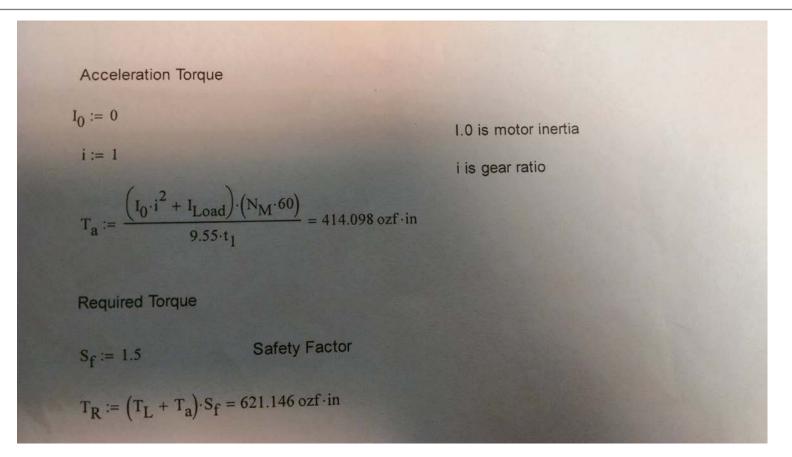
Drag Force:

 $\rho := 1.225 \frac{\text{kg}}{\text{m}^3}$ v := 35 mph $A_{\text{c}} := \pi \cdot 6 \text{in} \cdot 3 \text{ft} = 0.438 \text{ m}^2$ $C_d := 2 \qquad \text{this is the drag coefficient for a half sphere}$ $F_d := 0.5 \cdot \rho \cdot v^2 \cdot C_d \cdot A = 131.291 \text{ N}$ 131 N = 29.451 bf

Note this is the force required to lower the target when a 30 mph tailwind is blowing on the back hollowed out portion.



Motor Selection Calculat	tions	
$\rho_{aluminum} \simeq 0.098 \frac{lb}{ln^3}$		
V _{max} := 3in-3in-18in = 16.	2·m ³	
mmax_brace ^{:=} Paluminum	V _{max} = 15.876 lb	The max weight allowed is 10lb
h _b := 3in w _b := 18in		
heace_max = 1/12 mmax_b	mace $\left(h_b^2 + w_b^2\right) = 4$	40.559 in ² 1b
m _{max_target} = 2.75kg Fi	berglass target weigh	is the most need to measure on scale
$h_{\chi} := 1.5 in = 0.125 ft$ $w_{\chi} := 1 ft + 5.5 in = 1.455$	8-fi	
L_target_max == 1	$x_{target} \left(h_t^2 + w_t^2 \right) =$	155.862-in ² lb
l_target_maxoffset = 1_ta	urges_max + m _{max_burg}	$pet'(1.5in)^2 = 169.503 in^2 lb$
m _{ivan} = 1.515		
r _{ivan} := 6in I _{ivan} := m _{ivan} r _{ivan} ² = 5	4-in ² th	
ILoad = Ibrace_max + 1.	target_max = 596.421	n ² ib



Team 16

